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. INTRODUCTION.

Yo rle st

Using the theory of stochastic flows the integrand in a stochastic integral is identified.

After some rearrangement this integrand is itself written in terms of a martingale which

Ry e

s

can be expressed as a stochastic integral, and by recursively repeating the representation a

homogeneous chaos expansion is obtained. Using the stochastic integral representation an

mt.egratlon by parts formula is then derived. If the inverse of the Malliavin matrix M be-
sl
longs to all the spaces L? (1) we show a random variable has a smooth density. The difficult

questions concerning the relationship between Hormander’s conditions on the coefficient
vector fields and the integrability of M~ ! are not d/iScused, but, at least for Markov flows,
the discussion below appears to be an elementary treatment of some ideas of the Malliavin
calculus. This paper was presented at the Workshop on Diffusion Approximations held

at the International Institute for Applied Systems Analysis, Laxenburg, Austria, in July

1987. A fuller treatment of the ideas given here can be found in [1].

2. DYNAMICS.

Consider a stochastic differential system
dz, = Xo(t, z¢)dt + X;(t, z,)dw . (2.1)

Herez€ R%, 0<t<Tandw = (w!,...,w™) is an m-dimensional Brownian motion on
(0, F, P). We shall suppose the coefficient vector fields X are smooth and have bounded
derivatives of all orders.

From results in [2], for example, it is known that for0 < s <t < T and z, € R? there
is a unique solution &, ,(z,) of (2.1) with &, ,(z,) = z,. Furthermore, there is a version
of this solution which, almost surely, is smooth in z, € R9.

If z, € R* and z = & ,(z,), because the solutions of (2.1) are unique:

o1 (Zo) = &1 (€00 (Z0))

-P\-‘.\_J‘.h\.v\-"fI-.J-’J-,\-PI'IIJ'-J'-I'
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Write D, , = %ﬁ for the Jacobian of the map z — §, ((z). Then, differentiating (2.2)
Dy,r = Dy,r Do -

Again, from [2| we know that D satisfies the equation

dz, 3X‘ N
—8?0 D,.'dt + a_f D, (dw; (2.3)

an,t =
with D, , = I, the d x d identity matrix.

Consider the matrix function V, ¢ defined by the stochastic differential equation

X, aX; , ;
v, = -V,, 3_60 dt -V, a_e' dw} (2.4)

with V, , = I. Here

. ) m ]
X! =xi_} Zl (%’f‘:)xz.
=

Then, see (2], d(V, (D, ;) = 0so

Vot = D;}.

3. MARTINGALE REPRESENTATION.

Suppose z, € R% is given. Consider a smooth, bounded function ¢ on R% and the
random variable ¢(&, r (z,)). Write {F;} for the right continuous, complete filtration
generated by Fy = o{w, : s < t}. Because z, is known o{z, : s <t} C F, and the process

(z¢,w;) is Markov. Consider the martingale

M, = Ele(& 1 (z0)) | F]-

Then by the martingale representation result

M, = My + /0‘ ~; (8)dw? (3.1)
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for some predictable, square integrable process 4. However, because £, ,(z;) is Markov,

writing z = & ,(zo)
M, = Elc(&o,r (20)) | ]
= Elc(&,r (2))]
= Ele(&,r (2)) | Ft]
=V(t,z).

By the chain rule ¢(&; r(z)) is differentiable in z. Consequently V (¢, z) is differentiable
in z. By considering the backward equation for £ r(z) as in Kunita [3] we see V (t,z) is

differentiable in t. Therefore, applying the Ito differentiation rule to V(t,z) with z =
€o,¢(Zo):

V(t,&,(z0)) =V(0,20) + /o‘ (Z—Z + LV)ds

t v
+A 5—1— de (3.2)

Here

L= ZX“—‘” Z(EX‘ )8::81

j=1 k=1
However, V(t,&, ¢(2o)) = M, so the decompositions (3.1) and (3.2) must be the same.

The bounded variation term in (3.2) is, therefore, zero, i.e.:

ov
+LV =0
a3s
and (as is well known) V is the solution of the backward Kolmogorov equation with a final
condition

e(zp) =V(T,z7).

Equating the martingale terms in (3.1) and (3.2)
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Differentiating inside the expectation

% = E[c,: (fg.T (3))DI,T l Ft]

by the chain rule,

= E[‘:e(fo,T (20))Do,r | F,]Dg,,l.
So
7i(t) = Elee(€o,7 (20)) Do r | Ft]DE,:l X; (3-3)
and
‘ .
M, = Elc(&,1(20))] +/0 Elee(§o,r(z0))Do,r | Fo)Dg } X(8, &0, (20))dw}.  (3.4)
REMARKS 3.1. Note the term Elc, (& 1 (20))Do,r | F,] is itself a martingale. If
the representation is written down at t =T
T .
My = c(&,1 (70)) = Ele(éo,1 (20))] +/(; Ele¢ (60,7 (20))Do,r | F.|Dg ) X;dw}. (3.5)

Also, the representation (3.4) holds for vector (or matrix) functions c.

If we take c(€£) = € to be the identity map on R? (3.5) gives

T .
€01 (z0) = Eléo.r (z0)] + / E(Do.r | F.|D;} X,dw}.

Also, if we consider (3.5) for a second smooth bounded function g and take the expected

value of the product of each side, we see:

Elc(&o,1(20))9(&0 1 (20))] = Ele(&o, 1 (20))El9(éo, 1 (20))]

m T
+E[Y [ EBle¢Dor | F.1D5 1 X,X; Dy  Elgg Do r | Fu]'ds|.
=170 (3.6)

DEFINITION 3.2. The Malliavin matrix for the system (2.1) is

M,, = zm: (/t D71 X, (u) X} (u)D;;‘du).
i=1 °°

Note something resembling M, , occurs in (3.6).
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4. HOMOGENEOUS CHAOS EXPANSIONS.

Consider an enlarged system with components ¢£(1) = (¢, D). The stochastic differ-
ential equation for £(1) is, therefore, the system (2.1) and (2.3). The coefficients in (2.3)
are no longer bounded, but following Norris [4] a sequence of ‘triangular’ systems can be
considered and the results on stochastic flows still hold. We can, therefore, consider the
Jacobian D{(!) of the system £(!) and a system ¢(2) = (£(1), D(1)), Proceeding in this

way £(*) is a system with components (¢ln- ”,D("—l)). Write

ER Do r
dc(1)
(2) _ (1)
65(1) o.T etc.
Equation (3.4) can then be written
T .
¢(o,r (20)) = Elc(éo,r (z0))] +/0 El") | F|D; | X dw,. (4.)

However, E[c(l) (fél}.) | Fy] can be represented, as in Section 3, as a stochastic integral
] .
E[c) | F,] = B[] +[0 E[c®) | £, D57 X (s )dwd, .

Here, XJ(.I) is the coefficient vector field of w’ in the system defining E(l). Substituting in

(4.1)

T |
c(6o.r(s0)) = Bl + BleV) [ D51 Xid
0 ’
Tl e (1)-1,,(1) i Y -1y g
+/ (/ E[e® | £y, |D{')7 X0 (s,)dwi, ) D5 1 X, dws.
o ‘o ' (4.2)

Now E[c(?) | F,,] can be expressed as a stochastic integral and the result substituted in
(4.2). Proceeding in this way we obtain the homogeneous chaos expansion of the random

variable ¢(§, 1 (zo)). The repeated stochastic integrals do not involve ¢ but only the

Jacobians D(¥) and coefficients X (%),

--------
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5. INTEGRATION BY PARTS.

LEMMA 5.1. Supposeu = (u;,...,un ) is a square integrable predictable process. Then

T . m T
Ele(or(z0)) [ widuf] = 3 B[eelor(zo) Do [ D7} Xele)us(e)ds]
1=1

PROOF. Consider the representation (3.5) for ¢(&, r(zo)). Multiply by foT u,dw}

and, using Fubini’s theorem, take the expectation.

COROLLARY 5.2. Takeu,(s) = (Dg, X;(s))*. Then
T .
Elc(é,r (-‘Co))/o (D5 ; X;(s))* dw,] = Efe, (o1 (z0)) Do,r Mo, 1 - (5.1)

REMARKS 5.3. Consider a product function k(& 1(zo)) = (& (z0))9(é0,T (Z0))

and apply Corollary 5.2 to h. Then
T )
E[(cg)(éo,r (%))/0 (D; , X;)* dw,] = El(ceg + eg¢) Do r Mo 7] (5.2)

We would like to take ¢ = My’ 3 D(')',;. in (5.2) so that we can obtain a bound for ¢,. This
can be done by considering, again following Norris (4], a hierarchy of stochastic systems
similar to, but different from, those introduced in Section 4.

This time write ¢(°) (w, s,t,z) = §, 4(z) for the flow defined by (2.1) and Df?t) (z) =
D, ¢(z) for its Jacobian. RS(;) = f! (D7 L X;(u))* dw} and M.(?t) = M, ; is the Malliavin
matrix defined in (3.2). Note that M, , can be considered as the predictable quadratic
variation of the tensor product of R(°) with its adjoint that is M‘(i) =(R(®) @ R(O)"), ,.

Now consider an enlarged system ¢(‘) with components
M) = (4(°), D), RO, M)y,

The results of Norris [4] on stochastic flows allow us to discuss the Jacobian D) of (1),

Suppose X‘(l) is the coefficient of w* in the system describing #(1), and write

t
R =/ (D) X (u))* duwl

M) = (R @ R)), .
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Then define
$(2) = (1), D) R p(1))

and inductively, ¢(**+1) = (¢c("), D(»)  R(n) M(")). Write V,, for the gradient operator
in the components of ¢(*). The following result is established like equation (5.2) by

considering the martingale representation (3.5) of the produce cg.

THEOREM 5.4. Suppose ¢ is a bounded C™® scalar function on R® with bounded deriva-

tives. Let g be a C™ possibly vector, or matrix, valued function on the state space of o(n)

such that g(¢{*)(0, T, z,)) and V,g(¢{")(0,T, z,)) are both in some L? (). Then
Ele(¢©) (0,T))g(6™) (0,T)) ® R{")
= E[(V0¢)(¢(0,7))9(¢™) (0, T)) Do 1+ Mo 1]
+ E[c(6)(0,7))(Va g)(¢™ (0, 7)) D" M{7)). (5.3)

COROLLARY 5.5. Gronwall’s inequality shows that D! is in all the L () spaces, so

if My 1. is in some L? () taking ¢(¢(')(0,T)) = My} Dy 1. in (5.3)

Elee(éo,1 (%0))] = Elc(éo,1(z0))My 1 D5 1 ® R 1]

~ Ele(o.r (20))(V19)(Do.z» Mo ) DS MED).

Because ¢ is bounded we, therefore, have the following result:

THEOREM 5.6. Suppose & r(z¢) is the solution of (2.1) and ¢ is any smooth bounded

function with bounded derivatives. Then if M 1. is in some LP (1)

[Elee (&o,7 (zo))]l < K sup [e(z)]. (5.4)
z€ R4

REMARKS 5.6. It is well known that (4.3) implies the random variable &, 1 (z,) has

a density d(z). To show the density d is smooth we wish to :stablish inequalities of the

s ™ Y Y Y Y
SR A,

Ny ﬁ l""{ ..'.- R

%

1

AR AN

Py -/' _-"
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| c >
E| (&, (z0))|| < K sup [¢(z)]. (5.5) )

: | [afa ] | s R4 _;
N Here o
a° g%t ges2 o4 f-:_t

| ¢~ agr ag T 9 %
: An argument from Fourier analysis, (see [4]), shows that if (5.5) is true for all a with 2.
¥ la| = @; + -+ + a4 < n where n > d +1 then the random variable &, 1 () has a density -.
5 d(z) which is in C*~ ¢~ 1(R?). i:_
) Apply Corollary 5.5 to c¢ rather than ¢ so X
| =
Elege (o1 (0))] = Eleg (éo0,7(20))M; 1 Dy 1 ® Ro 7] -
"

1 1

— Ele¢(bo,r (20))(V19) (Do,r, Mo 1) DS 3 M), .

(5.6) o

.

Consider the two terms on the right of (5.6) and write M = M, 7, D = Dy r, etc. Let o
.r'

0 (¢3)) =MD" ' @ RM~'D"! o

Ca
, and g,(¢(*)) = (V,9)(D,M)DMI M M~ D"1, 3
&

) Applying Theorem 5.4 to ¢g;, and cg,:
.
. Ele(éo,7(20))91 (")) @R = Efee(§o,1 (z0))M™ 'D™' ® R 5
+ Elc(£o,7(20)) (V291 )(¢*)) DB M)}, "
. (5.7) 3
X and _
‘~\

L
Elc(&,r(0))92(¢(*)) ® R] = Elce(éo,r (20))(V19)(D, M)DI M)
+ Ele(€o,7 (20))(V39,)(6)) DEIMB)), ]
(5.8) NS

Using (5.7) and (5.8) the terms on the right of (5.6) can be replaced by terms involving c. .

Ky

This procedure can be iterated using Theorem 5.4 and the following result established: ‘_:
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THEOREM 5.7. Suppose M~! is in all spaces L?(f1), 1 < p < co. Then the random e
U
-
variable &, 7 (z,) has a smooth density. ,'
o
The remaining questions concern the existence and integrability properties of M 1‘. . ""
Y
These have been carefully studied; see Ikeda and Watanabe |2}, or Norris [4], for example. ﬁ-::
L4
In fact MO—TI‘ is in LP () for all p, 1 < p < oo, if the following condition of Hérmander is L
[ ',"-
satisfied: 2»
CONDITION 5.8. The vector space V (z,) generated by the coefficient vector fields :-E":
Xi,--.,Xm and the brackets [X,-,XJ-], 0<1t,j<m, [X,, [X,-,Xk]], 0<1,5,k <m etc., L
+4
evaluated at z, € R?, is the whole of RS. ;:':'.t
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